Spring Boot and Micrometer with Prometheus Part 5: Spinning up prometheus

Previously we got our Spring Boot Application adapter in order to expose the endpoints for prometheus.
This blog will focus on setting up prometheus and configure it in order to server the Spring Boot Endpoints.
So let’s get started by spinning up the prometheus server using docker.

Before proceeding on spinning up prometheus we need to supply a configuration file to pull data from our application.
Thus we should supply a prometheus.yaml file with the following contents.

scrape_configs:
  - job_name: 'prometheus-spring'
    scrape_interval: 1m
    metrics_path: '/actuator/prometheus'
    static_configs:
      - targets: ['my.local.machine:8080']

Let’s use the command taken from here.

Due to using prometheus on osx through docker, we need some workarounds to connect through the app

sudo ifconfig lo0 alias 172.16.222.111

We can use directly docker

docker run -v /path/to/prometheus.yaml:/etc/prometheus/prometheus.yml -p 9090:9090 --add-host="my.local.machine:172.16.222.111" prom/prometheus

By doing the above we shall be able to interact with our local application from inside the docker image.

So if we navigate to http://localhost:9090/graph we shall be greeted with our prometheus screen.
Also inside our prometheus container we are also able to communicate to our application which shall run locally.

So let’s give some time and see if the data has been collected. Then let’s go to prometheus status page http://localhost:9090/status.

We shall be greeted by the JVM information of our application.

On the next blog we shall focus on securing our prometheus endpoints.

Spring Boot and Micrometer with Prometheus Part 4: The base project

In previous posts we had a look on Spring Micrometer and InfluxDB. So you are gonna ask me why prometheus.
The reason is that prometheus is operating on a pull model vs the push model of InfluxDB.

This means that if you use micrometer with InfluxDB you are definitely going to have some overhead on pushing the results to the database as well as it is one extra pain point to make the InfluxDB database always there available to handle all the requests.

So what if instead of pushing the data, use another tool in order to pull data from the applications?
This is one of the things you can get by using Prometheus. By using prometheus you ask for the data from the application, you don’t have to receive the data.

So what we are going to do is to use exactly the same project we used on the first tutorial.

The only changes needed shall be on the applicaiton.yaml as well as the pom.xml

We shall start from pom.xml and add the micrometer binary for prometheus.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
	<modelVersion>4.0.0</modelVersion>

	<parent>
		<groupId>org.springframework.boot</groupId>
		<artifactId>spring-boot-starter-parent</artifactId>
		<version>2.2.4.RELEASE</version>
	</parent>

	<groupId>com.gkatzioura</groupId>
	<artifactId>spring-prometheus-micrometer</artifactId>
	<version>1.0-SNAPSHOT</version>

	<properties>
		<micrometer.version>1.3.2</micrometer.version>
	</properties>

	<build>
		<defaultGoal>spring-boot:run</defaultGoal>
		<plugins>
			<plugin>
				<groupId>org.apache.maven.plugins</groupId>
				<artifactId>maven-compiler-plugin</artifactId>
				<configuration>
					<source>8</source>
					<target>8</target>
				</configuration>
			</plugin>
			<plugin>
				<groupId>org.springframework.boot</groupId>
				<artifactId>spring-boot-maven-plugin</artifactId>
			</plugin>
		</plugins>
	</build>

	<dependencies>
		<dependency>
			<groupId>org.springframework.boot</groupId>
			<artifactId>spring-boot-starter-webflux</artifactId>
		</dependency>
		<dependency>
			<groupId>org.springframework.boot</groupId>
			<artifactId>spring-boot-starter-actuator</artifactId>
		</dependency>
		<dependency>
			<groupId>io.micrometer</groupId>
			<artifactId>micrometer-core</artifactId>
			<version>${micrometer.version}</version>
		</dependency>
		<dependency>
			<groupId>io.micrometer</groupId>
			<artifactId>micrometer-registry-prometheus</artifactId>
			<version>${micrometer.version}</version>
		</dependency>
		<dependency>
			<groupId>org.projectlombok</groupId>
			<artifactId>lombok</artifactId>
			<version>1.18.12</version>
			<scope>provided</scope>
		</dependency>
	</dependencies>
</project>

Then we shall add application.yaml which enables prometheus.

management:
endpoints:
web:
exposure:
include: prometheus

So now we are ready to run the application.

> mvn spring-boot:run

If we try to access actuator we are gonna be presented with the prometheus endpoint.

> curl http://localhost:8080/actuator
{
  "_links": {
    "self": {
      "href": "http://localhost:8080/actuator",
      "templated": false
    },
    "prometheus": {
      "href": "http://localhost:8080/actuator/prometheus",
      "templated": false
    }
  }
}

This “http://localhost:8080/actuator/prometheus&#8221; is the endpoint that our prometheus server would use to pull data.
So our prometheus server needs to be configured to access these data exposed by that endpoint.

On the next blog we shall deploy prometheus and view some metrics.

Spring Boot and Micrometer with InlfuxDB Part 2: Adding InfluxDB

Since we added our base application it is time for us to spin up an InfluxDB instance.

We shall follow a previous tutorial and add a docker instance.

docker run –rm -p 8086:8086 –name influxdb-local influxdb

Time to add the micrometer InfluxDB dependency on our pom

<dependencies>
...
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-actuator</artifactId>
        </dependency>
        <dependency>
            <groupId>io.micrometer</groupId>
            <artifactId>micrometer-core</artifactId>
            <version>1.3.2</version>
        </dependency>
        <dependency>
            <groupId>io.micrometer</groupId>
            <artifactId>micrometer-registry-influx</artifactId>
            <version>1.3.2</version>
        </dependency>
...
</dependencies>

Time to add the configuration through the application.yaml

management:
  metrics:
    export:
      influx:
        enabled: true
        db: devjobsapi
        uri: http://127.0.0.1:8086
  endpoints:
    web:
      expose: "*"

Let’s spin up our application and do some requests.
After some time we can check the database and the data contained.

docker exec -it influxdb-local influx
> SHOW DATABASES;
name: databases
name
----
_internal
devjobsapi
> use devjobsapi
Using database devjobsapi
> SHOW MEASUREMENTS
name: measurements
name
----
http_server_requests
jvm_buffer_count
jvm_buffer_memory_used
jvm_buffer_total_capacity
jvm_classes_loaded
jvm_classes_unloaded
jvm_gc_live_data_size
jvm_gc_max_data_size
jvm_gc_memory_allocated
jvm_gc_memory_promoted
jvm_gc_pause
jvm_memory_committed
jvm_memory_max
jvm_memory_used
jvm_threads_daemon
jvm_threads_live
jvm_threads_peak
jvm_threads_states
logback_events
process_cpu_usage
process_files_max
process_files_open
process_start_time
process_uptime
system_cpu_count
system_cpu_usage
system_load_average_1m

That’s pretty awesome. Let’s check the endpoints accessed.

> SELECT*FROM http_server_requests;
name: http_server_requests
time                count exception mean        method metric_type outcome status sum         upper       uri
----                ----- --------- ----        ------ ----------- ------- ------ ---         -----       ---
1582586157093000000 1     None      252.309331  GET    histogram   SUCCESS 200    252.309331  252.309331  /actuator
1582586157096000000 0     None      0           GET    histogram   SUCCESS 200    0           2866.531375 /jobs/github/{page}

Pretty great! The next step would be to visualise those metrics.

Spring Boot and Micrometer with InlfuxDB Part 1: The base project

To those who follow this blog it’s no wonder that I tend to use InfluxDB a lot. I like the fact that it is a real single purpose database (time series) with many features and also comes with enterprise support.

Spring is also one of the tools of my choice.
Thus in this blog we shall integrate spring with micrometer and InfluxDB.

Our application will be a rest api for jobs.
Initially it will fetch the Jobs from Github’s job api as shown here.

Let’s start with a pom

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>2.2.4.RELEASE</version>
    </parent>

    <groupId>com.gkatzioura</groupId>
    <artifactId>DevJobsApi</artifactId>
    <version>1.0-SNAPSHOT</version>

    <build>
        <defaultGoal>spring-boot:run</defaultGoal>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <configuration>
                    <source>8</source>
                    <target>8</target>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
        </plugins>
    </build>

    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-webflux</artifactId>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.18.12</version>
            <scope>provided</scope>
        </dependency>
   </dependencies>
</project>

Let’s add the Job Repository for GitHub.

package com.gkatzioura.jobs.repository;

import java.util.List;

import org.springframework.http.HttpMethod;
import org.springframework.stereotype.Repository;
import org.springframework.web.reactive.function.client.WebClient;

import com.gkatzioura.jobs.model.Job;

import reactor.core.publisher.Mono;

@Repository
public class GitHubJobRepository {

    private WebClient githubClient;

    public GitHubJobRepository() {
        this.githubClient = WebClient.create("https://jobs.github.com");
    }

    public Mono<List<Job>> getJobsFromPage(int page) {

        return githubClient.method(HttpMethod.GET)
                           .uri("/positions.json?page=" + page)
                           .retrieve()
                           .bodyToFlux(Job.class)
                           .collectList();
    }

}

The Job model

package com.gkatzioura.jobs.model;

import lombok.Data;

@Data
public class Job {

    private String id;
    private String type;
    private String url;
    private String createdAt;
    private String company;
    private String companyUrl;
    private String location;
    private String title;
    private String description;

}

The controller

package com.gkatzioura.jobs.controller;

import java.util.List;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import com.gkatzioura.jobs.model.Job;
import com.gkatzioura.jobs.repository.GitHubJobRepository;

import reactor.core.publisher.Mono;

@RestController
@RequestMapping("/jobs")
public class JobsController {

    private final GitHubJobRepository gitHubJobRepository;

    public JobsController(GitHubJobRepository gitHubJobRepository) {
        this.gitHubJobRepository = gitHubJobRepository;
    }

    @GetMapping("/github/{page}")
    private Mono<List<Job>> getEmployeeById(@PathVariable int page) {
        return gitHubJobRepository.getJobsFromPage(page);
    }

}

And last but not least the main application.

package com.gkatzioura;


import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.EnableAutoConfiguration;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.boot.autoconfigure.security.reactive.ReactiveSecurityAutoConfiguration;

@SpringBootApplication
@EnableAutoConfiguration(exclude = {
        ReactiveSecurityAutoConfiguration.class
})
public class Application {

    public static void main(String[] args) {
        SpringApplication.run(Application.class, args);
    }
}

On the next blog we are going to integrate with InfluxDB and micrometer.

Implement custom JMeter samplers

As we proceed on different architectures and implementations the need for versatile stress testing tools rises.

Apache Jmeter is one the most well known tools when it comes to load testing. It supports many protocols such as ftp http tcp and also it can be used easily for distributed testing.

Jmeter also provides you with an easy way to create custom samplers. For example if you need to load test a http endpoint that requires a specific procedure for signing the headers then a custom sampler will come in handy.

The goal is to implement a custom sampler project which will load test a simple function.

I use gradle for this example.

group 'com.gkatzioura.jmeter'
version '1.0-SNAPSHOT'

apply plugin: 'java'

sourceCompatibility = 1.6

repositories {
    mavenCentral()
}


dependencies {
    compile 'org.apache.jmeter:ApacheJMeter_java:2.11'
    compile 'org.json:json:20151123'
    testCompile group: 'junit', name: 'junit', version: '4.11'
}

task copySample(type:Copy,dependsOn:[build]) {

    copy {
        from project.buildDir.getPath()+'/libs/jmeter-sampler-1.0-SNAPSHOT.jar'
        into 'pathtoyourjmeterinstallation/apache-jmeter-2.13/lib/ext/'
    }
}

I include the ApacheJMeter dependency on the project since the sampler will have to extend the AbstractJavaSamplerClient.
The copySample task will copy the jar to the lib/ext path of Jmeter where all samplers reside.

A simple function will be called by the sampler

package com.gkatzioura.jmeter;

/**
 * Created by gkatzioura on 30/1/2016.
 */
public class FunctionalityForSampling {

    public String testFunction(String arguement1,String arguement2) throws Exception {

        if (arguement1.equals(arguement2)) {
            throw new Exception();
        }

        else return arguement1+arguement2;
    }

}

The CustomSampler class extends the AbstractJavaSamplerClient class and invokes the testFunction.
By overriding the getDefaultParameters function we can apply default parameters that can be used with the request.

package com.gkatzioura.jmeter;

import org.apache.jmeter.config.Arguments;
import org.apache.jmeter.protocol.java.sampler.AbstractJavaSamplerClient;
import org.apache.jmeter.protocol.java.sampler.JavaSamplerContext;
import org.apache.jmeter.samplers.SampleResult;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.io.Serializable;

/**
 * Created by gkatzioura on 30/1/2016.
 */
public class CustomSampler extends AbstractJavaSamplerClient implements Serializable {

    private static final String METHOD_TAG = "method";
    private static final String ARG1_TAG = "arg1";
    private static final String ARG2_TAG = "arg2";

    private static final Logger LOGGER = LoggerFactory.getLogger(CustomSampler.class);

    @Override
    public Arguments getDefaultParameters() {

        Arguments defaultParameters = new Arguments();
        defaultParameters.addArgument(METHOD_TAG,"test");
        defaultParameters.addArgument(ARG1_TAG,"arg1");
        defaultParameters.addArgument(ARG2_TAG,"arg2");

        return defaultParameters;
    }

    @Override
    public SampleResult runTest(JavaSamplerContext javaSamplerContext) {

        String method = javaSamplerContext.getParameter(METHOD_TAG);
        String arg1 = javaSamplerContext.getParameter(ARG1_TAG);
        String arg2 = javaSamplerContext.getParameter(ARG2_TAG);

        FunctionalityForSampling functionalityForSampling = new FunctionalityForSampling();

        SampleResult sampleResult = new SampleResult();
        sampleResult.sampleStart();

        try {
            String message = functionalityForSampling.testFunction(arg1,arg2);
            sampleResult.sampleEnd();;
            sampleResult.setSuccessful(Boolean.TRUE);
            sampleResult.setResponseCodeOK();
            sampleResult.setResponseMessage(message);
        } catch (Exception e) {
            LOGGER.error("Request was not successfully processed",e);
            sampleResult.sampleEnd();
            sampleResult.setResponseMessage(e.getMessage());
            sampleResult.setSuccessful(Boolean.FALSE);

        }

        return sampleResult;
    }

}

After compile is finished the jar created must be copied to the lib/ext directory of the JMeter installation home.
Also in case there are more dependencies that have to be imported they should also be copied to the lib path of the JMeter installation home

Once the process is complete by adding Java Sampler to a JMeter Thread Group we can choose our custom sampler.

Screenshot from 2016-01-31 01:30:06

You can also find the source code here.