Spring Boot and Micrometer with Prometheus Part 5: Spinning up prometheus

Previously we got our Spring Boot Application adapter in order to expose the endpoints for prometheus.
This blog will focus on setting up prometheus and configure it in order to server the Spring Boot Endpoints.
So let’s get started by spinning up the prometheus server using docker.

Before proceeding on spinning up prometheus we need to supply a configuration file to pull data from our application.
Thus we should supply a prometheus.yaml file with the following contents.

scrape_configs:
  - job_name: 'prometheus-spring'
    scrape_interval: 1m
    metrics_path: '/actuator/prometheus'
    static_configs:
      - targets: ['my.local.machine:8080']

Let’s use the command taken from here.

Due to using prometheus on osx through docker, we need some workarounds to connect through the app

sudo ifconfig lo0 alias 172.16.222.111

We can use directly docker

docker run -v /path/to/prometheus.yaml:/etc/prometheus/prometheus.yml -p 9090:9090 --add-host="my.local.machine:172.16.222.111" prom/prometheus

By doing the above we shall be able to interact with our local application from inside the docker image.

So if we navigate to http://localhost:9090/graph we shall be greeted with our prometheus screen.
Also inside our prometheus container we are also able to communicate to our application which shall run locally.

So let’s give some time and see if the data has been collected. Then let’s go to prometheus status page http://localhost:9090/status.

We shall be greeted by the JVM information of our application.

On the next blog we shall focus on securing our prometheus endpoints.

Spring Boot and Micrometer with Prometheus Part 4: The base project

In previous posts we had a look on Spring Micrometer and InfluxDB. So you are gonna ask me why prometheus.
The reason is that prometheus is operating on a pull model vs the push model of InfluxDB.

This means that if you use micrometer with InfluxDB you are definitely going to have some overhead on pushing the results to the database as well as it is one extra pain point to make the InfluxDB database always there available to handle all the requests.

So what if instead of pushing the data, use another tool in order to pull data from the applications?
This is one of the things you can get by using Prometheus. By using prometheus you ask for the data from the application, you don’t have to receive the data.

So what we are going to do is to use exactly the same project we used on the first tutorial.

The only changes needed shall be on the applicaiton.yaml as well as the pom.xml

We shall start from pom.xml and add the micrometer binary for prometheus.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
	<modelVersion>4.0.0</modelVersion>

	<parent>
		<groupId>org.springframework.boot</groupId>
		<artifactId>spring-boot-starter-parent</artifactId>
		<version>2.2.4.RELEASE</version>
	</parent>

	<groupId>com.gkatzioura</groupId>
	<artifactId>spring-prometheus-micrometer</artifactId>
	<version>1.0-SNAPSHOT</version>

	<properties>
		<micrometer.version>1.3.2</micrometer.version>
	</properties>

	<build>
		<defaultGoal>spring-boot:run</defaultGoal>
		<plugins>
			<plugin>
				<groupId>org.apache.maven.plugins</groupId>
				<artifactId>maven-compiler-plugin</artifactId>
				<configuration>
					<source>8</source>
					<target>8</target>
				</configuration>
			</plugin>
			<plugin>
				<groupId>org.springframework.boot</groupId>
				<artifactId>spring-boot-maven-plugin</artifactId>
			</plugin>
		</plugins>
	</build>

	<dependencies>
		<dependency>
			<groupId>org.springframework.boot</groupId>
			<artifactId>spring-boot-starter-webflux</artifactId>
		</dependency>
		<dependency>
			<groupId>org.springframework.boot</groupId>
			<artifactId>spring-boot-starter-actuator</artifactId>
		</dependency>
		<dependency>
			<groupId>io.micrometer</groupId>
			<artifactId>micrometer-core</artifactId>
			<version>${micrometer.version}</version>
		</dependency>
		<dependency>
			<groupId>io.micrometer</groupId>
			<artifactId>micrometer-registry-prometheus</artifactId>
			<version>${micrometer.version}</version>
		</dependency>
		<dependency>
			<groupId>org.projectlombok</groupId>
			<artifactId>lombok</artifactId>
			<version>1.18.12</version>
			<scope>provided</scope>
		</dependency>
	</dependencies>
</project>

Then we shall add application.yaml which enables prometheus.

management:
endpoints:
web:
exposure:
include: prometheus

So now we are ready to run the application.

> mvn spring-boot:run

If we try to access actuator we are gonna be presented with the prometheus endpoint.

> curl http://localhost:8080/actuator
{
  "_links": {
    "self": {
      "href": "http://localhost:8080/actuator",
      "templated": false
    },
    "prometheus": {
      "href": "http://localhost:8080/actuator/prometheus",
      "templated": false
    }
  }
}

This “http://localhost:8080/actuator/prometheus&#8221; is the endpoint that our prometheus server would use to pull data.
So our prometheus server needs to be configured to access these data exposed by that endpoint.

On the next blog we shall deploy prometheus and view some metrics.