Embed Jython to you java codebase.

Jython is a great tool for some quick java scripts using a pretty solid syntax. Actually it works wonderfully when it comes to implement some maintenance or monitoring scripts with jmx for you java apps.

In case you work with other teams with a python background, it makes absolute sense to integrate python to your java applications.

First let’s import the jython interpeter using the standalone version.

group 'com.gkatzioura'
version '1.0-SNAPSHOT'

apply plugin: 'java'

sourceCompatibility = 1.5

repositories {
    mavenCentral()
}

dependencies {
    testCompile group: 'junit', name: 'junit', version: '4.11'
    compile group: 'org.python', name: 'jython-standalone', version: '2.7.0'
}

So the easiest thing to do is just to execute a python file in our class path. The file would be hello_world.py

print "Hello World"

And then pass the file as an inputstream to the interpeter

package com.gkatzioura;

import org.python.core.PyClass;
import org.python.core.PyInteger;
import org.python.core.PyObject;
import org.python.core.PyObjectDerived;
import org.python.util.PythonInterpreter;

import java.io.InputStream;

/**
 * Created by gkatzioura on 19/10/2016.
 */
public class JythonCaller {

    private PythonInterpreter pythonInterpreter;

    public JythonCaller() {
        pythonInterpreter = new PythonInterpreter();
    }

    public void invokeScript(InputStream inputStream) {

        pythonInterpreter.execfile(inputStream);
    }

}
    @Test
    public void testInvokeScript() {

        InputStream inputStream = this.getClass().getClassLoader().getResourceAsStream("hello_world.py");
        jythonCaller.invokeScript(inputStream);
    }

Next step is to create a python class file and and another python file that will import the class file and instantiate a class.

The class file would be divider.py.

class Divider:

    def divide(self,numerator,denominator):

        return numerator/denominator;

And the file importing the Divider class would be classcaller.py

from divider import Divider

divider = Divider()

print divider.divide(10,5);

So let us test it

    @Test
    public void testInvokeClassCaller() {

        InputStream inputStream = this.getClass().getClassLoader().getResourceAsStream("classcaller.py");
        jythonCaller.invokeScript(inputStream);
    }

What we can understand from this example is that the interpreter imports successfully the files from the classpath.

Running files using the interpreter is ok, however we need to fully utilize classes and functions implemented in python.
Therefore next step is to create a python class and use its functions using java.

package com.gkatzioura;

import org.python.core.PyClass;
import org.python.core.PyInteger;
import org.python.core.PyObject;
import org.python.core.PyObjectDerived;
import org.python.util.PythonInterpreter;

import java.io.InputStream;

/**
 * Created by gkatzioura on 19/10/2016.
 */
public class JythonCaller {

    private PythonInterpreter pythonInterpreter;

    public JythonCaller() {
        pythonInterpreter = new PythonInterpreter();
    }

    public void invokeClass() {

        pythonInterpreter.exec("from divider import Divider");
        PyClass dividerDef = (PyClass) pythonInterpreter.get("Divider");
        PyObject divider = dividerDef.__call__();
        PyObject pyObject = divider.invoke("divide",new PyInteger(20),new PyInteger(4));

        System.out.println(pyObject.toString());
    }

}

You can find the sourcecode on github.

Advertisement

Java on the AWS cloud using Lambda, Api Gateway and CloudFormation

On a previous post we implemented a java based aws lambda function and deployed it using CloudFormation.

Since we have our lambda function set up we will integrate it with a http endpoint using AWS API Gateway.

Amazon API Gateway is a fully managed service that makes it easy for developers to create, publish, maintain, monitor, and secure APIs at any scale. With a few clicks in the AWS Management Console, you can create an API that acts as a “front door” for applications to access data, business logic, or functionality from your back-end services, such as workloads running on Amazon Elastic Compute Cloud (Amazon EC2), code running on AWS Lambda, or any Web application

For this example imagine API gateway as if it is an HTTP Connector.

We will change our original function in order to implement a division.

package com.gkatzioura.deployment.lambda;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

import java.math.BigDecimal;
import java.util.Map;
import java.util.logging.Logger;

/**
 * Created by gkatzioura on 9/10/2016.
 */
public class RequestFunctionHandler implements RequestHandler<Map<String,String>,String> {

    private static final String NUMERATOR_KEY = "numerator";
    private static final String DENOMINATOR_KEY = "denominator";

    private static final Logger LOGGER = Logger.getLogger(RequestFunctionHandler.class.getName());

    public String handleRequest(Map <String,String> values, Context context) {

        LOGGER.info("Handling request");

        if(!values.containsKey(NUMERATOR_KEY)||!values.containsKey(DENOMINATOR_KEY)) {
            return "You need both numberator and denominator";
        }

        try {
            BigDecimal numerator = new BigDecimal(values.get(NUMERATOR_KEY));
            BigDecimal denominator= new BigDecimal(values.get(DENOMINATOR_KEY));
            return  numerator.divide(denominator).toString();
        } catch (Exception e) {
            return "Please provide valid values";
        }
    }

}

Then we will change our lambda code and update it on s3.

aws s3 cp build/distributions/JavaLambdaDeployment.zip s3://lambda-functions/JavaLambdaDeployment.zip

Next step is to update our CloudFormation template and add the api gateway forwarding requests to our lambda function.

First we have to declare our Rest api

    "AGRA16PAA": {
      "Type": "AWS::ApiGateway::RestApi",
      "Properties": {"Name": "CalculationApi"}
    }

Then we need to add a rest resource. Inside the DependsOn element we can see the id of our rest api. Therefore cloudwatch will create the resource after the rest api has been created.

"AGR2JDQ8": {
      "Type": "AWS::ApiGateway::Resource",
      "Properties": {
        "RestApiId": {"Ref": "AGRA16PAA"},
        "ParentId": {
          "Fn::GetAtt": ["AGRA16PAA","RootResourceId"]
        },
        "PathPart": "divide"
      },
      "DependsOn": [
        "AGRA16PAA"
      ]
    }

Another crucial part is to add a permission in order to be able to invoke our lambda function.

    "LPI6K5": {
      "Type": "AWS::Lambda::Permission",
      "Properties": {
        "Action": "lambda:invokeFunction",
        "FunctionName": {"Fn::GetAtt": ["LF9MBL", "Arn"]},
        "Principal": "apigateway.amazonaws.com",
        "SourceArn": {"Fn::Join": ["",
          ["arn:aws:execute-api:", {"Ref": "AWS::Region"}, ":", {"Ref": "AWS::AccountId"}, ":", {"Ref": "AGRA16PAA"}, "/*"]
        ]}
      }
    }

Last step would be to add the api gateway method in order to be able to invoke our lambda function from the api gateway. Furthermore we will add an api gateway deployment instruction.

"Deployment": {
      "Type": "AWS::ApiGateway::Deployment",
      "Properties": {
        "RestApiId": { "Ref": "AGRA16PAA" },
        "Description": "First Deployment",
        "StageName": "StagingStage"
      },
      "DependsOn" : ["AGM25KFD"]
    },
    "AGM25KFD": {
      "Type": "AWS::ApiGateway::Method",
      "Properties": {
        "AuthorizationType": "NONE",
        "HttpMethod": "POST",
        "ResourceId": {"Ref": "AGR2JDQ8"},
        "RestApiId": {"Ref": "AGRA16PAA"},
        "Integration": {
          "Type": "AWS",
          "IntegrationHttpMethod": "POST",
          "IntegrationResponses": [{"StatusCode": 200}],
          "Uri": {
            "Fn::Join": [
              "",
              [
                "arn:aws:apigateway:",
                {"Ref": "AWS::Region"},
                ":lambda:path/2015-03-31/functions/",
                {"Fn::GetAtt": ["LF9MBL", "Arn"]},
                "/invocations"
              ]
            ]
          }
        },
        "MethodResponses": [{
          "StatusCode": 200
        }]
      }

So we ended up with our new cloudwatch configuration.

{
  "AWSTemplateFormatVersion": "2010-09-09",
  "Resources": {
    "LF9MBL": {
      "Type": "AWS::Lambda::Function",
      "Properties": {
        "Code": {
          "S3Bucket": "lambda-functions",
          "S3Key": "JavaLambdaDeployment.zip"
        },
        "FunctionName": "SimpleRequest",
        "Handler": "com.gkatzioura.deployment.lambda.RequestFunctionHandler",
        "MemorySize": 128,
        "Role": "arn:aws:iam::274402012893:role/lambda_basic_execution",
        "Runtime": "java8"
      }
    },
    "Deployment": {
      "Type": "AWS::ApiGateway::Deployment",
      "Properties": {
        "RestApiId": { "Ref": "AGRA16PAA" },
        "Description": "First Deployment",
        "StageName": "StagingStage"
      },
      "DependsOn" : ["AGM25KFD"]
    },
    "AGM25KFD": {
      "Type": "AWS::ApiGateway::Method",
      "Properties": {
        "AuthorizationType": "NONE",
        "HttpMethod": "POST",
        "ResourceId": {"Ref": "AGR2JDQ8"},
        "RestApiId": {"Ref": "AGRA16PAA"},
        "Integration": {
          "Type": "AWS",
          "IntegrationHttpMethod": "POST",
          "IntegrationResponses": [{"StatusCode": 200}],
          "Uri": {
            "Fn::Join": [
              "",
              [
                "arn:aws:apigateway:",
                {"Ref": "AWS::Region"},
                ":lambda:path/2015-03-31/functions/",
                {"Fn::GetAtt": ["LF9MBL","Arn"]},
                "/invocations"
              ]
            ]
          }
        },
        "MethodResponses": [{"StatusCode": 200}]
      },
      "DependsOn": ["LF9MBL","AGR2JDQ8","LPI6K5"]
    },
    "AGR2JDQ8": {
      "Type": "AWS::ApiGateway::Resource",
      "Properties": {
        "RestApiId": {"Ref": "AGRA16PAA"},
        "ParentId": {
          "Fn::GetAtt": ["AGRA16PAA","RootResourceId"]
        },
        "PathPart": "divide"
      },
      "DependsOn": ["AGRA16PAA"]
    },
    "AGRA16PAA": {
      "Type": "AWS::ApiGateway::RestApi",
      "Properties": {
        "Name": "CalculationApi"
      }
    },
    "LPI6K5": {
      "Type": "AWS::Lambda::Permission",
      "Properties": {
        "Action": "lambda:invokeFunction",
        "FunctionName": {"Fn::GetAtt": ["LF9MBL", "Arn"]},
        "Principal": "apigateway.amazonaws.com",
        "SourceArn": {"Fn::Join": ["",
          ["arn:aws:execute-api:", {"Ref": "AWS::Region"}, ":", {"Ref": "AWS::AccountId"}, ":", {"Ref": "AGRA16PAA"}, "/*"]
        ]}
      }
    }
 }
}

Last but not least, we have to update our previous cloudformation stack.

So we uploaded our latest template

aws s3 cp cloudformationjavalambda2.template s3://cloudformation-templates/cloudformationjavalambda2.template

And all we have to do is to update our stack.

aws cloudformation update-stack --stack-name JavaLambdaStack --template-url https://s3.amazonaws.com/cloudformation-templates/cloudformationjavalambda2.template

Our stack has just been updated.
We can got to our api gateway endpoint and try to issue a post.

curl -H "Content-Type: application/json" -X POST -d '{"numerator":1,"denominator":"2"}' https://{you api gateway endpoint}/StagingStage/divide
"0.5"

You can find the sourcecode on github.

Java on the AWS cloud using Lambda

Amazon Web Services gets more popular by the day. Java is a first class citizen on AWS and it is pretty easy to get started.
Deploying your application is a bit different, but still easy and convenient.

AWS Lambda is a compute service where you can upload your code to AWS Lambda and the service can run the code on your behalf using AWS infrastructure. After you upload your code and create what we call a Lambda function, AWS Lambda takes care of provisioning and managing the servers that you use to run the code.

Actually think of lambda as running a task that needs up to five minutes to finish. In case of simple actions or jobs that are not time consuming, and don’t require a huge framework, AWS lambda is the way to go. Also AWS lambda is great for horizontal scaling.

The most stripped down example would be to create a lambda function that responds to a request.

We shall implement the RequestHandler interface.

package com.gkatzioura.deployment.lambda;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

import java.util.Map;
import java.util.logging.Logger;

/**
 * Created by gkatzioura on 9/10/2016.
 */
public class RequestFunctionHandler implements RequestHandler<Map<String,String>,String> {

    private static final Logger LOGGER = Logger.getLogger(RequestFunctionHandler.class.getName());

    public String handleRequest(Map <String,String> values, Context context) {

        LOGGER.info("Handling request");

        return "You invoked a lambda function";
    }

}

Somehow RequestHandler is like a controller.

To proceed we will have to create a jar file with the dependencies needed, therefore we will create a custom gradle task

apply plugin: 'java'

repositories {
    mavenCentral()
}

dependencies {
    compile (
            'com.amazonaws:aws-lambda-java-core:1.1.0',
            'com.amazonaws:aws-lambda-java-events:1.1.0'
    )
}

task buildZip(type: Zip) {
    from compileJava
    from processResources
    into('lib') {
        from configurations.runtime
    }
}

build.dependsOn buildZip

Then we should build

gradle build

Now we have to upload our code to our lambda function.

I have a s3 bucket on amazon for lambda functions only. Supposing that our bucket is called lambda-functions (I am pretty sure it is already reserved).
We will use aws cli wherever possible.

aws s3 cp build/distributions/JavaLambdaDeployment.zip s3://lambda-functions/JavaLambdaDeployment.zip

Now instead of creating a lambda function the manual way we are going to do so by creating a cloud formation template.

{
  "AWSTemplateFormatVersion": "2010-09-09",
  "Resources": {
    "LF9MBL": {
      "Type": "AWS::Lambda::Function",
      "Properties": {
        "Code": {
          "S3Bucket": "lambda-functions",
          "S3Key" : "JavaLambdaDeployment.zip",
        },
        "FunctionName": "SimpleRequest",
        "Handler": "com.gkatzioura.deployment.lambda.RequestFunctionHandler",
        "MemorySize": 128,
        "Role":"arn:aws:iam::274402012893:role/lambda_basic_execution",
        "Runtime":"java8"
      },
      "Metadata": {
        "AWS::CloudFormation::Designer": {
          "id": "66b2b325-f19a-4d7d-a7a9-943dd8cd4a5c"
        }
      }
    }
  }
}

Next step is to upload our cloudformation template to an s3 bucket. Personally I use a separate bucket for my templates. Supposing that our bucket is called cloudformation-templates

aws s3 cp cloudformationjavalambda.template s3://cloudformation-templates/cloudformationjavalambda.template

Next step is to create our cloudformation stack using the template specified

aws cloudformation create-stack --stack-name JavaLambdaStack --template-url https://s3.amazonaws.com/cloudformation-templates/cloudformationjavalambda.template

In order to check we shall invoke the lambda function through the amazon cli

aws lambda invoke --invocation-type RequestResponse --function-name SimpleRequest --region eu-west-1 --log-type Tail --payload '{}' outputfile.txt

And the result is the expected

"You invoked a lambda function"

You can find the source code on github.

Spring Security and Custom Password Encoding

On a previous post we added password encoding to our spring security configuration using jdbc and md5 password encoding.

However in case of custom UserDetailsServices we need to make some tweeks to our security configuration.
We need to create a DaoAuthenticationProvider bean and set it to the AuthenticationManagerBuilder.

Since we need a Custom UserDetailsService I will use use the Spring Security/MongoDB example codebase.

What we have to do is to change our Spring Security configuration.

package com.gkatzioura.spring.security.config;

import com.gkatzioura.spring.security.service.CustomerUserDetailsService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Profile;
import org.springframework.security.authentication.dao.DaoAuthenticationProvider;
import org.springframework.security.authentication.encoding.Md5PasswordEncoder;
import org.springframework.security.config.annotation.authentication.builders.AuthenticationManagerBuilder;
import org.springframework.security.config.annotation.web.builders.HttpSecurity;
import org.springframework.security.config.annotation.web.configuration.EnableWebSecurity;
import org.springframework.security.config.annotation.web.configuration.WebSecurityConfigurerAdapter;
import org.springframework.security.core.userdetails.UserDetailsService;
import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;

import javax.sql.DataSource;

/**
 * Created by gkatzioura on 10/5/16.
 */
@EnableWebSecurity
@Profile("encodedcustompassword")
public class PasswordCustomEncodedSecurityConfig extends WebSecurityConfigurerAdapter {

    @Bean
    public UserDetailsService mongoUserDetails() {
        return new CustomerUserDetailsService();
    }

    @Bean
    public DaoAuthenticationProvider authProvider() {
        DaoAuthenticationProvider authProvider = new DaoAuthenticationProvider();
        authProvider.setUserDetailsService(mongoUserDetails());
        authProvider.setPasswordEncoder(new BCryptPasswordEncoder());
        return authProvider;
    }

    @Override
    protected void configure(AuthenticationManagerBuilder auth) throws Exception {

        auth.authenticationProvider(authProvider());
    }

    @Override
    protected void configure(HttpSecurity http) throws Exception {

        http.authorizeRequests()
                .antMatchers("/public").permitAll()
                .anyRequest().authenticated()
                .and()
                .formLogin()
                .permitAll()
                .and()
                .logout()
                .permitAll();
    }

}

In most cases this works ok. However we might as well want to roll our own PasswordEncoder, which is pretty easy.

package com.gkatzioura.spring.security.encoder;

import org.springframework.security.crypto.bcrypt.BCrypt;
import org.springframework.security.crypto.password.PasswordEncoder;

/**
 * Created by gkatzioura on 10/5/16.
 */
public class CustomPasswordEncoder implements PasswordEncoder {

    @Override
    public String encode(CharSequence rawPassword) {

        String hashed = BCrypt.hashpw(rawPassword.toString(), BCrypt.gensalt(12));

        return hashed;
    }

    @Override
    public boolean matches(CharSequence rawPassword, String encodedPassword) {

        return BCrypt.checkpw(rawPassword.toString(), encodedPassword);
    }

}

So we will change our configuration in order to use the new PasswordEncoder

    @Bean
    public DaoAuthenticationProvider authProvider() {
        DaoAuthenticationProvider authProvider = new DaoAuthenticationProvider();
        authProvider.setUserDetailsService(mongoUserDetails());
        authProvider.setPasswordEncoder(new CustomPasswordEncoder());
        return authProvider;
    }

Next step will be to create the encoded password.

   @Test
    public void customEncoder() {

        CustomPasswordEncoder customPasswordEncoder = new CustomPasswordEncoder();
        String encoded = customPasswordEncoder.encode("custom_pass");

        LOGGER.info("Custom encoded "+encoded);
    }

Then add a user with a hashed password to our mongodb database.

db.users.insert({"name":"John","surname":"doe","email":"john2@doe.com","password":"$2a$12$qB.L7buUPi2RJHZ9fYceQ.XdyEFxjAmiekH9AEkJvh1gLFPGEf9mW","authorities":["user","admin"]})

All that we need is to change the default profile on our gradle script and we are good to go.

bootRun {
    systemProperty "spring.profiles.active", "encodedcustompassword"
}

You can find the sourcecode on github.

Spring Security and Password Encoding

On previous posts we dived into spring security. We implemented security backed by jdbc, security based on custom jdbc queries and security retrieving information from a nosql database.

By being careful enough we will find out that passwords are in plain text. Although this serves well for example purposes in real environments, passwords are always encoded and stored encoded in the database.

Spring security supports password encoding in a pretty convenient way. It comes with its own preconfigured password encoders but It alsos gives us the ability to either create our custom password encoder.

StandardPasswordEncoder, Md5PasswordEncoder and the popular BCryptPasswordEncoder are some of the password encoders that come along with spring security.

package com.gkatzioura.spring.security;

import org.junit.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.security.authentication.encoding.Md5PasswordEncoder;
import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;
import org.springframework.security.crypto.password.StandardPasswordEncoder;

/**
 * Created by gkatzioura on 10/5/16.
 */
public class EncoderTest {

    private static final Logger LOGGER = LoggerFactory.getLogger(EncoderTest.class);

    @Test
    public void md5Encoder() {

        Md5PasswordEncoder md5PasswordEncoder = new Md5PasswordEncoder();
        String encoded = md5PasswordEncoder.encodePassword("test_pass",null);

        LOGGER.info("Md5 encoded "+encoded);
    }

    @Test
    public void bcryptEncoder() {

        BCryptPasswordEncoder bCryptPasswordEncoder = new BCryptPasswordEncoder();
        String encoded = bCryptPasswordEncoder.encode("test_pass");

        LOGGER.info("Becrypt encoded "+encoded);
    }

    @Test
    public void standardEncoder() {

        StandardPasswordEncoder standardPasswordEncoder = new StandardPasswordEncoder();
        String encoded = standardPasswordEncoder.encode("test_pass");

        LOGGER.info("Standard encoded "+encoded);
    }

}

To add password encoding all we have to do is to set a password encoder in our spring configuration.

With jdbc-backed spring security configuration it is pretty easy, we just set the password encoder of our choice. In our case, we will use the bcrypt password encoder.

package com.gkatzioura.spring.security.config;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Profile;
import org.springframework.security.config.annotation.authentication.builders.AuthenticationManagerBuilder;
import org.springframework.security.config.annotation.web.builders.HttpSecurity;
import org.springframework.security.config.annotation.web.configuration.EnableWebSecurity;
import org.springframework.security.config.annotation.web.configuration.WebSecurityConfigurerAdapter;
import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;

import javax.sql.DataSource;

/**
 * Created by gkatzioura on 10/5/16.
 */
@EnableWebSecurity
@Profile("encodedjdbcpassword")
public class PasswordEncodedSecurityConfig extends WebSecurityConfigurerAdapter {

    @Autowired
    private DataSource dataSource;

    @Override
    protected void configure(AuthenticationManagerBuilder auth) throws Exception {

        auth.jdbcAuthentication().dataSource(dataSource)
                .passwordEncoder(new BCryptPasswordEncoder())
                .usersByUsernameQuery("SELECT username,password,1 FROM Custom_Users_Encoded_pass where username=?")
                .authoritiesByUsernameQuery("SELECT username,authority FROM Custom_Roles where username=?");
    }

    @Override
    protected void configure(HttpSecurity http) throws Exception {

        http.authorizeRequests()
                .antMatchers("/public").permitAll()
                .anyRequest().authenticated()
                .and()
                .formLogin()
                .permitAll()
                .and()
                .logout()
                .permitAll();
    }

}

Then we will add a user to the database with the encoded password.

drop table if exists Custom_Users_Encoded_pass;
create table Custom_Users_Encoded_pass(id bigint auto_increment, username varchar(255), password varchar(255));
-- real password is test_pass
insert into Custom_Users_Encoded_pass(username,password) values('TestUser','$2a$10$nA8k2TPoXgACwWhCZXhomOlvwtNReWprcVgjRpDiZNAGXN3UMLgSO');

Therefore by trying to access
http://localhost:8080/secured will have to give the username TestUser and the password test_pass in the login prompt.

Last but not least we will have to change our gradle.build to set encodedjdbcpassword as our default profile.

bootRun {
    systemProperty "spring.profiles.active", "encodedjdbcpassword"
}

You can find the sourcecode on github.

Scan DynamoDB Items with DynamoDBMapper

Previously we covered how to query a DynamoDB database either using DynamoDBMapper or the low level java api.

Apart from issuing queries, DynamoDB also offers Scan functionality.
What scan does, is fetching all the Items you might have on your DynamoDB Table.
Therefore scan does not require any rules based on our partition key or your global/local secondary indexes.
What scan offers is filtering based on the items already fetched and return specific attributes from the items fetched.

The snippet below issues a scan on the Logins table by filtering items with a lower date.

    public List<Login> scanLogins(Long date) {

        Map<String, String> attributeNames = new HashMap<String, String>();
        attributeNames.put("#timestamp", "timestamp");

        Map<String, AttributeValue> attributeValues = new HashMap<String, AttributeValue>();
        attributeValues.put(":from", new AttributeValue().withN(date.toString()));

        DynamoDBScanExpression dynamoDBScanExpression = new DynamoDBScanExpression()
                .withFilterExpression("#timestamp < :from")
                .withExpressionAttributeNames(attributeNames)
                .withExpressionAttributeValues(attributeValues);

        List<Login> logins = dynamoDBMapper.scan(Login.class, dynamoDBScanExpression);

        return logins;
    }

Another great feature of DynamoDBMapper is parallel scan. Parallel scan divides the scan task among multiple workers, one for each logical segment. The workers process the data in parallel and return the results.
Generally the performance of a scan request depends largely on the number of items stored in a DynamoDB table. Therefore parallel scan might lift some of the performance issues of a scan request, since you have to deal with large amounts of data.

    public List<Login> scanLogins(Long date,Integer workers) {

        Map<String, String> attributeNames = new HashMap<String, String>();
        attributeNames.put("#timestamp", "timestamp");

        Map<String, AttributeValue> attributeValues = new HashMap<String, AttributeValue>();
        attributeValues.put(":from", new AttributeValue().withN(date.toString()));

        DynamoDBScanExpression dynamoDBScanExpression = new DynamoDBScanExpression()
                .withFilterExpression("#timestamp < :from")
                .withExpressionAttributeNames(attributeNames)
                .withExpressionAttributeValues(attributeValues);

        List<Login> logins = dynamoDBMapper.parallelScan(Login.class, dynamoDBScanExpression,workers);

        return logins;
    }

Before using scan to our application we have to take into consideration that scan fetches all table items. Therefore It has a high cost both on charges and performance. Also it might consume your provision capacity.
Generally it is better to stick to queries and avoid scans.

You can find full source code with unit tests on github.

Query DynamoDB Items with DynamoDBMapper

On a previous post we issued queries on a DynamoDB database using the low level java api.

Querying using the DynamoDBMapper is pretty easy.

Issue a query using a hash key is as simple as it gets. The best candidate for a query like this would be the Users table by searching using the email hash key.

    public User getUser(String email) {

        User user = dynamoDBMapper.load(User.class,email);
        return user;
    }

Since we use only hashkey for the Users table, our result would be limited to one.

The load function can also be used for composite keys. Therefore querying for a Logins Table Item would require a hash key and a range key.

    public Login getLogin(String email,Long date) {

        Login login =  dynamoDBMapper.load(Login.class,email,date);
        return login;
    }

Next step is to issue more complex queries using conditions. We will issue a query that will fetch the login attempts between two dates.


 public List<Login> queryLoginsBetween(String email, Long from, Long to) {

        Map<String,String> expressionAttributesNames = new HashMap<>();
        expressionAttributesNames.put("#email","email");
        expressionAttributesNames.put("#timestamp","timestamp");

        Map<String,AttributeValue> expressionAttributeValues = new HashMap<>();
        expressionAttributeValues.put(":emailValue",new AttributeValue().withS(email));
        expressionAttributeValues.put(":from",new AttributeValue().withN(Long.toString(from)));
        expressionAttributeValues.put(":to",new AttributeValue().withN(Long.toString(to)));

        DynamoDBQueryExpression<Login> queryExpression = new DynamoDBQueryExpression<Login>()
                .withKeyConditionExpression("#email = :emailValue and #timestamp BETWEEN :from AND :to ")
                .withExpressionAttributeNames(expressionAttributesNames)
                .withExpressionAttributeValues(expressionAttributeValues);

        return dynamoDBMapper.query(Login.class,queryExpression);
    }

We use DynamoDBQueryExpression, in the same manner that we used it in the low level api.
The main difference is that we do not have to handle the paging at all. DynamoDBMapper will map the DynamoDB items to objects but also it will return a “lazy-loaded” collection. It initially returns only one page of results, and then makes a service call for the next page if needed.

Last but not least querying on indexes is one of the basic actions. It is the same routine either for local or global secondary indexes.
Keep in mind that the results fetched, depend on the projection type we specified once creating the Table. In our case the projection type is for all fields.

   public Supervisor getSupervisor(String company,String factory) {

        Map<String,String> expressionAttributesNames = new HashMap<>();
        expressionAttributesNames.put("#company","company");
        expressionAttributesNames.put("#factory","factory");

        Map<String,AttributeValue> expressionAttributeValues = new HashMap<>();
        expressionAttributeValues.put(":company",new AttributeValue().withS(company));
        expressionAttributeValues.put(":factory",new AttributeValue().withS(factory));

        DynamoDBQueryExpression<Supervisor> dynamoDBQueryExpression = new DynamoDBQueryExpression<Supervisor>()
                .withIndexName("FactoryIndex")
                .withKeyConditionExpression("#company = :company and #factory = :factory ")
                .withExpressionAttributeNames(expressionAttributesNames)
                .withExpressionAttributeValues(expressionAttributeValues)
                .withConsistentRead(false);

        List<Supervisor> supervisor = dynamoDBMapper.query(Supervisor.class,dynamoDBQueryExpression);

        if(supervisor.size()>0) {
            return supervisor.get(0);
        } else {
            return null;
        }
    }

Pay extra attention to the fact that consistent read is set to false. DynamoDBQueryExpression uses by defaut consistent reads. When using a global secondary index you cannot issue a consistent read.

You can find full source code with unit tests on github.